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Problem One: NP

For each of the following languages, show that the language is in NP by designing a polynomial-
time verifier.

i. Given a sequence of numbers x1, x2, …, xn, an ascending subsequence is a subsequence of 
the original sequence (that is, some elements of the sequence taken in the original order in 
which they appear) such that each term is larger than the previous term.  For example, 
given the sequence 2, 3, 0, 1, 4, the subsequence 2, 3, 4 is an ascending subsequence, as is 
0, 1, 4.  Let ASCEND = { ⟨x1, x2, …, xn, k  | There is an ascending subsequence of ⟩ x1 … xn 

with length at least k. }  Prove that ASCEND  ∈ NP by designing a polynomial-time veri-
fier for it. 

ii. In an undirected graph G = (V, E), a dominating set is a set D  ⊆ V such that every node in 
V either belongs to D or is connected to a node in D by an edge.  Every graph has a domi-
nating set consisting of every node in the graph, though it's unclear whether smaller domi-
nating sets exist.

Let DS = { ⟨G,  k  | ⟩ G is an undirected graph containing a dominating set with at most  k 
nodes }.  Prove that DS  ∈ NP by designing a polynomial-time verifier for it.  (It turns out 
that DS  ∈ NPC as well, though that proof is a bit harder.)

Problem Two: NP-Completeness

The independent set problem, as covered in lecture, is specified as follows:

INDSET = { ⟨G, k  | ⟩ G is an undirected graph that contains an independent set of size k }

As we saw in lecture, INDSET is NP-complete.  Using the fact that INDSET is NP-complete, you 
will prove that the set packing problem is NP-complete as well.

In the set packing problem, you are given a list of n sets S1, S2, …, Sn along with a number k.  The 
goal is to answer the question

Is there a collection of k sets from the list S1, S2, …, Sn 
such that no element is contained in two of those k sets?

For example, given the sets

{1, 3, 5}, {1, 2, 3}, {2, 4}, {2, 5, 7}, {6}

And the number 3, we would answer “yes” because the collection of sets {1, 3, 5}, {2, 4}, and {6} 
collectively have no elements in common with one another.
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Formally, we define the set packing problem as

SETPACK = { ⟨S1, S2, …, Sn, k  | There are ⟩ k mutually non-overlapping sets in S1 … Sn }

i. Prove that SETPACK  ∈ NP by designing an NTM that decides it in polynomial time.

To show that SETPACK is  NP-complete, we will reduce the  INDSET problem to it.  Given a 
graph G = (V, E), we will construct a family of sets whose elements are the edges in G.  There will 
be one set for each vertex in the graph.  Specifically, for each node in vi  ∈ V, we will create a set 
Si defined as follows:

Si = { {vi, vj} | {vi, vj}  ∈ E }

That is, the set associated with the vertex  vi is the set of all edges incident to  vi.  For example, 
given this graph:

A B

C D E

We would construct the sets

• SA = { {A, B}, {A, C} }

• SB = { {A, B}, {B, C}, {B, D}, {B, E} }

• SC = { {A, C}, {B, C}, {C, D} }

• SD = { {B, D}, {C, D}, {D, E} }

• SE = { {B, E}, {D, E} }

ii. Using this reduction, prove that SETPACK  ∈ NPC by showing INDSET ≤P SETPACK.

Thanks for attending!  Good luck on the final exam!


