Section Handout 8

Problem One: NP

For each of the following languages, show that the language is in NP by designing a polynomialtime verifier.
i. Given a sequence of numbers $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$, an ascending subsequence is a subsequence of the original sequence (that is, some elements of the sequence taken in the original order in which they appear) such that each term is larger than the previous term. For example, given the sequence $2,3,0,1,4$, the subsequence $\mathbf{2 , 3}, \mathbf{4}$ is an ascending subsequence, as is $\mathbf{0}, \mathbf{1}, 4$. Let $A S C E N D=\left\{\left\langle x_{1}, x_{2}, \ldots, x_{\mathrm{n}}, k\right\rangle \mid\right.$ There is an ascending subsequence of $x_{1} \ldots x_{\mathrm{n}}$ with length at least k. \} Prove that $A S C E N D \in \mathbf{N P}$ by designing a polynomial-time verifier for it.
ii. In an undirected graph $G=(V, E)$, a dominating set is a set $D \subseteq V$ such that every node in V either belongs to D or is connected to a node in D by an edge. Every graph has a dominating set consisting of every node in the graph, though it's unclear whether smaller dominating sets exist.

Let $D S=\{\langle G, k\rangle \mid G$ is an undirected graph containing a dominating set with at most k nodes $\}$. Prove that $D S \in \mathbf{N P}$ by designing a polynomial-time verifier for it. (It turns out that $D S \in$ NPC as well, though that proof is a bit harder.)

Problem Two: NP-Completeness

The independent set problem, as covered in lecture, is specified as follows:
INDSET $=\{\langle G, k\rangle \mid G$ is an undirected graph that contains an independent set of size $k\}$
As we saw in lecture, INDSET is NP-complete. Using the fact that INDSET is NP-complete, you will prove that the set packing problem is NP-complete as well.

In the set packing problem, you are given a list of n sets $S_{1}, S_{2}, \ldots, S_{n}$ along with a number k. The goal is to answer the question

Is there a collection of k sets from the list $S_{1}, S_{2}, \ldots, S_{\mathrm{n}}$ such that no element is contained in two of those k sets?

For example, given the sets

$$
\{1,3,5\},\{1,2,3\},\{2,4\},\{2,5,7\},\{6\}
$$

And the number 3, we would answer "yes" because the collection of sets $\{1,3,5\},\{2,4\}$, and $\{6\}$ collectively have no elements in common with one another.

Formally, we define the set packing problem as
SETPACK $=\left\{\left\langle S_{1}, S_{2}, \ldots, S_{\mathrm{n}}, k\right\rangle \mid\right.$ There are k mutually non-overlapping sets in $\left.S_{1} \ldots S_{\mathrm{n}}\right\}$
i. Prove that SETPACK $\in \mathbf{N P}$ by designing an NTM that decides it in polynomial time.

To show that SETPACK is NP-complete, we will reduce the INDSET problem to it. Given a graph $G=(V, E)$, we will construct a family of sets whose elements are the edges in G. There will be one set for each vertex in the graph. Specifically, for each node in $v_{i} \in V$, we will create a set S_{i} defined as follows:

$$
S_{i}=\left\{\left\{v_{i}, v_{j}\right\} \mid\left\{v_{i}, v_{j}\right\} \in E\right\}
$$

That is, the set associated with the vertex v_{i} is the set of all edges incident to v_{i}. For example, given this graph:

We would construct the sets

- $S_{A}=\{\{A, B\},\{A, C\}\}$
- $S_{B}=\{\{A, B\},\{B, C\},\{B, D\},\{B, E\}\}$
- $S_{C}=\{\{A, C\},\{B, C\},\{C, D\}\}$
- $S_{D}=\{\{B, D\},\{C, D\},\{D, E\}\}$
- $S_{E}=\{\{B, E\},\{D, E\}\}$
ii. Using this reduction, prove that $S E T P A C K \in \mathbf{N P C}$ by showing $I N D S E T \leq{ }_{\mathrm{p}} S E T P A C K$.

Thanks for attending! Good luck on the final exam!

